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Summary

An analytical study wasmade to (1) provide com-
parative information on various crash pulse shapes

that potentially could be used to test seats to the pa-
rameter conditions included in Federal Regulations
Part 23 x 23.562(b)(1) for dynamic testing of gen-

eral aviation seats, (2) show the e�ects that crash
pulse shape can have on the seat stroke requirements
necessary to maintain a speci�ed limit loading on
the seat/occupant under various vertical crash pulse

loadings, (3) compare results from certain analyti-
cal model pulses with approximations of actual crash
pulses, and (4) compare analytical seat results from

application of the speci�ed test parameters of the
seat test regulation with experimental airplane crash
data. Equations for �ve models of potentially useful
pulse shapes were derived which express the displace-

ment of the aircraft structure and the displacement of
the seat/occupant in terms of the maximum deceler-
ation, velocity change, limit seat pan load, and pulse
time. From these equations, analytical seat stroke

data were obtained under the test conditions as spec-
i�ed in Federal Regulations Part 23 x 23.562(b)(1) for
dynamic testing of general aviation seats.

Introduction

With the advent of transportation vehicles came
sometimes unwanted application of suddenly applied

accelerations to human occupants of such vehicles.
Abnormal accelerations, for example, arise in air-
planes from the impact of the vehicle with the ground

during a crash. Research in aviation crash dynamics
dates back to the pioneering work of Hugh De Haven
in the 1940's. De Haven survived a midair collision
and the ensuing crash of an airplane to later initi-

ate crash research through on-site investigations of
aircraft accidents to identify components and sub-
systemswhich contributed to injury and fatality. Re-

sults from this work produced design guidelines that
remain pertinent today (ref. 1) and can still be found
in production of agricultural airplanes (refs. 2 and 3).

E�orts to appraise the hazards of these acceler-
ations to humans are found in reference 4. From

this and other literature, it is apparent that whole-
body human tolerance to sudden acceleration de-
pends upon many factors, such as (1) direction of

acceleration application, (2) magnitude of the accel-
eration, (3) duration of the acceleration, (4) onset
rate of the acceleration, and (5) how the occupant's
body is supported during application of the accelera-

tion. Furthermore, various parts of the human body
are able to withstand di�erent magnitude and dura-
tion of acceleration prior to sustaining injury. For

example, accelerations perpendicular to the spine of

between 30g (0.15-sec duration) and 40g (0.05-sec
duration) were tolerated by well-restrained human

subjects compared with between 5g (0.15-sec dura-
tion) and 15g (0.05-sec duration) for an acceleration
applied along the spine (ref. 4). Consequently, when
tolerance to crash loads of human sub jects in the gen-

eral population is discussed, often a vertical (along
the spine) g load of about 12g to 15g with a duration
of approximately 0.10 sec is mentioned. However, in

recent years, the emphasis has shifted to ameasure of
spinal load in the pelvic region of a 49 CFR (Code of
Federal Regulations) Part 572 dummy which is con-
sidered more meaningful than a g load for assessing

the consequences of crash loads on humans.

One means of providing a degree of protection
to passengers in aircraft during a crash situation is
the seat/restraint system. Various studies have ad-

dressed concepts to enhance survivability in crash
situations through a load-limiting seat which pro-
vides stroking distance under reduced and controlled
loads (refs. 5 to 12). Additionally, guidelines for

dynamic testing of general aviation seats, which
were proposed by the General Aviation Safety Panel
(GASP) (ref. 13) and subsequently placed into Fed-

eral Regulations (ref. 14), are intended to achieve
some degree of occupant protection in crash situ-
ations. Speci�cally, one of the regulations relative
to dynamic tests of aircraft seat/restraint systems

given by x 23.562(b)(1) states, \For the �rst test,
the change in velocity may not be less than 31 feet
per second. The seat/restraint system must be ori-

ented in its nominal position with respect to the air-
plane and with the horizontal plane of the airplane
pitched up 60 degrees, with no yaw, relative to the
impact vector. For seat/restraint systems to be in-

stalled in the �rst row of the airplane, peak decel-
eration must occur in not more than 0.05 sec after
impact and must reach a minimum of 19g. For all

other seat/restraint systems, peak deceleration must
occur in not more than 0.06 sec after impact and
must reach a minimum of 15g."

Compliance criteria covering all the regulations
are included in reference 14; however, the focus of

this paper is x 23.562(7) which states, \The com-
pression load measured between the pelvis and lum-
bar spine of the ATD may not exceed 1500 pounds."

(ATD designates anthropomorphic test dummy.) As
noted in reference 15, experimental crush data for
vertebrae (T8 through T12 and L1 through L5) in-
dicate that the crushing force ranged from slightly

over 1300 to 2360 lb. The T9 thoracic vertebrae of
the spine (carrying 60 lb which is the estimated up-
per body weight of a 50-percentile man) was crushed

at approximately 1500 lb. Based upon this and other
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considerations (for example, ref. 16), the criterion be-
came 1500 lb.

Since the regulations in Part 23 do not specify

any particular pulse shape to achieve the required
magnitudes and durations of the seat loadings in a
laboratory environment, the purpose of this paper is

to (1) provide comparative information for various
pulse shapes that potentially could be used to test
seats to meet the regulation, (2) show the e�ects
that crash pulse shape can have on the seat stroke

requirements necessary to maintain a speci�ed limit
loading on the seat/occupant under various vertical

crash pulse loadings, (3) compare results from certain

analytical model pulses with the approximations of
actual crash pulses, and (4) compare the speci�ed
test parameters of the regulation to airplane crash
test data.

Symbols

a deceleration, ft/sec2

as deceleration of seat/occupant,

ft/sec2

ATD anthropomorphic test dummy

DRI dynamic response index

g acceleration due to gravity, ft/sec2

Gl l imit deceleration on seat pan,
g units

Gm maximum deceleration magnitude of

crash pulse, g units

k sti�ness of dynamic response index
model, lb/ft

K ratio of seat pan limit deceleration
to maximum deceleration magni-

tude of pulse, Gl=Gm

m mass, slugs

S seat stroke, (SS � SA)12, in.

SA displacement of airframe, ft

SS displacement of seat/occupant, ft

t time, sec

tf maximum duration of seat pan
loading, sec

tL time to reach seat pan maximum
deceleration, sec

tm maximum pulse duration of trape-
zoidal, skewed or symmetric trian-

gle, and quarter-sine crash pulses
(one-half pulse duration or rise time
of half-sine crash pulse), sec

tr rise time to peak deceleration
(skewed, or symmetric triangle or

trapezoidal pulse), sec

V velocity, ft/sec

VA velocity of airframe during crash
pulse, ft/sec

Vo initial impact velocity, ft/sec

VS velocity of seat/occupant during
crash pulse, ft/sec

VS;1 velocity of seat/occupant at time tL
in crash pulse, ft/sec

VS;2 velocity of seat/occupant between
times tL and tf in crash pulse,

ft/sec

�Z peak of input acceleration for

dynamic response index model,
g units

�m maximum displacement of dynamic
response index model, ft

�t pulse duration of acceleration
applied to dynamic response index
model, sec

!n natural frequency of dynamic
response index model, rad/sec

� damping coe�cient of dynamic
response index model

Analysis

The photographic sequence in �gure 1 illustrates

the crash dynamics of a general aviation type, single-
engine airplane test specimen. The nose landing gear
of the airplane specimen contacted the impact surface

with an initial velocity, ight-path angle, pitch, roll,
and yaw angle. High-speed motion pictures of the
crash show the nose gear starting to collapse and
the engine cowling contacting the impact surface

0.028 sec after initial ground contact, followed by
the starboard wing tip at 0.035 sec. The windshield
began to deect and the �re wall started to penetrate

the cabin at 0.060 sec. At the same time, the aft
section of the fuselage began to deform, and the
starboard landing gear contacted the impact surface.
The port landing gear contacted the impact surface

at 0.13 sec into the impact, and the port wing
immediately thereafter broke away from the fuselage
at the aft spar and rotated forward around the front

spar.
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The approximate pitch attitude was retained dur-
ing crash impact. At 0.15 sec, the aft cabin sec-

tion pitched forward about 10� as a result of main
landing-gear springback. The airplane then settled
back to an angle of about 45� and continued to skid
before stopping. The fuselage cabin remained at

about the same pitch, roll, and yaw angles as at the
initial impact attitude. Obviously, as indicated by
the discussion of the sequence of �gure 1, a crash

is a complex occurrence with a variety of parame-
ters contributing to the airframe load during impact.
Aerodynamic, elastic, and plastic structural defor-
mation; inertial forces; and frictional forces interplay

to remove the kinetic energy of the airplane and to
change the path of the airplane from the conditions
just prior to impact. As these events occur, seats and

occupants respond to the loads and motions of the
crash.

Assumptions and idealizations are made con-
cerning the crash event and the behavior of the
seat/occupant and aircraft structure. Under these

assumptions and idealizations, equations are pre-
sented for the aircraft structural stroke (crushing)
and the seat/system displacement as a function of

the change in vertical impact velocity for various to-
tal pulse durations and pulse shapes where the seat
limit design load has been chosen as 12g. Included
in the crash load pulse information are test pulses

which could satisfy conditions for testing of general
aviation seats as proposed by the General Aviation
Safety Panel (GASP) (ref. 13) and could be subse-

quently included in Federal Regulations Part 23|
Airworthiness Standards (ref. 14), hereinafter called
Part 23.

In this section, equations are derived for (a) the
crushing distance of aircraft structure which would

be necessary to produce the idealized crash pulse
shapes and (b) the displacement of the seat/occupant
system. With these equations, the required stroke

of the seat relative to the aircraft that would be
necessary tomaintain a limit 12g load on the seat pan
of the seat/occupant undergoing the vertical loading
of the particular crash pulse can be determined. It

is again emphasized that Federal Regulations Part
23 speci�es a maximum load (as opposed to a g

limit) in the pelvis of an ADT of 1500 lb. The 12g

seat pan limit is discussed relative to the 1500-lbf
criteria and an often used technique for evaluating
occupant response to dynamic inputs, the dynamic
response index (DRI). The DRI is a one-degree-of-

freedom, damped, spring mass model of the upper
torso (spine) derived from Air Force experiments
(ref. 15). The index is the maximum acceleration

response in g units to inputs to the spinal model

which has a natural frequency of 52.9 rad/sec and
damping ratio of 0.224.

Assumptions and Idealizations

The crash event of an aircraft as depicted in �g-
ure 1 is generally a very complex sequence of events,
but a good understanding of the structural response
and seat/occupant behavior can be obtained by sim-

plifying analytical techniques. Knowledge of the lim-
itations and assumptions of the analyses is required.
Useful trends and typical phenomena associated with

the crash eventmay be studied successfully with such
techniques.

Figure 2 presents the various assumed and ideal-
ized analytical models of the crash loadings for which

required seat stroke distance for maintaining a limit
load on the seat pan has been derived. The idealized
shapes include

Trapezoidal pulse (�g. 2(a))
Half-sine wave (�g. 2(b))
Quarter-sine wave (�g. 2(c))
Skewed triangular pulse (�g. 2(d))
Symmetric triangular pulse (�g. 2(e))

In the derivation of equations for the analytical mod-

els of the crash loading pulses, the vertical and longi-
tudinal behavior is assumed to be uncoupled; that is,
the inuence of longitudinal loads on vertical loads

is not considered in any of the equations or data pre-
sented. The seat/occupant combination is assumed
to follow the structure loading up to the limit load of
the seat pan, and no dynamic overshoot is considered

in the behavior of the seat pan response. The total
vertical impact velocity is assumed to be removed at
the end of the crash pulse, and the seat/occupant

velocity is also assumed to be reduced to zero at the
end of the seat pan limit loading pulse duration. No
assumptions are made concerning the availability of
actual crushable aircraft structure necessary to pro-

duce the crash pulses under consideration nor what
seatmechanism could provide the stroking distances.

Appropriate equations derived in the section
\Trapezoidal Pulse Load" and the equations pre-

sented in the appendix for the other pulse shapes
were solved with a commercial computer program on
a personal computer. The solutions provided decel-

eration and seat stroke data for the plots presented
in the section \Results and Discussion."

Trapezoidal Pulse Load

In this section, equations are derived for the
trapezoidal pulse loading shape that provides the

necessary magnitude, rise time to peak loading,
and velocity change speci�ed by Federal Regulations
Part 23 for dynamic seat testing (ref. 14.). A detailed
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derivation is presented only for the trapezoidal pulse
shape (sketch A). In the appendix only the equations

are given for the other pulse shapes. Results using
the equations for these pulse shapes are presented as
plots of deceleration versus velocity change and seat
stroke in the section \Results and Discussion."
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Sketch A

For aircraft structure, the velocity during the

particular trapezoidal deceleration pulse can be ex-
pressed as

VA = Vo +

Z t

0
a dt (1)

where 0 � t � tr , and substituting for a (sketch A)
gives

VA = Vo +

Z t

0
�Gmg

�
t

tr

�
dt (2)

Integrating equation (2) gives

VA = Vo +

"
�Gmg

 
t2

2tr

!# t
0

(3)

which evaluates at t = tr to be

VA = Vo� Gmg
tr

2
(4)

Equation (4) is the velocity history of the aircraft up
to time t r of the trapezoidal crash loading. Using
equation (3) now to determine the aircraft displace-
ment as the integral of the velocity gives

SA =

Z t

0
VA dt (5)

or

SA =

Z t

0

 
Vo � Gmg

t2

2tr

!
dt (6)

Integrating equation (6) gives

SA = Vot

#t
0

+Gmg
t3

6tr

# t
0

(7)

Evaluation at t = tr gives

SA = Votr � Gmg
t2r
6

(8)

which is the general expression for the displacement

of the aircraft up to time tr of the trapezoidal decel-
eration. For the time tr < t < tm ,

VA = Vo� Gmg
tr

2
+

Z t

t r
�Gmg dt (9)

Integrating and evaluating at t = tm for which

VA = 0 give

Vo =

�
Gmg

2

�
(2tm � tr) (10)

Thus the total airplane displacement at t = tm is

SA = Votr � Gmg
t2r
6

+

Z tm

tr

�
Vo� Gmg

tr

2
� Gmg(t � tr)

�
dt (11)

which integrates and evaluates in the limits to

SA = Votm � Gmg
t2r
6
�

�
Gmg

tm

2

�
(tm � t r) (12)

For the seat/occupant, the total displacement is

SS =

Z tL

0
VS;1 dt +

Z t f

tL

VS;2 dt (13)

where for 0 < t � tL,

VS;1 = Vo +

Z t

0
a dt (14)

which evaluates within the limits, after substituting

a = �Gmg(t=t r) and integrating, to be

VS;1 = Vo �Gmg
t2

2t r
(15)

Additionally, for tL < t,

VS;2 =

�
Vo +

Z t

0
a dt

�
+

Z t

tL

as dt (16)
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which upon appropriate substitution of a = �Gmg�
(t=tr) and as = �Glg, integration, and evaluation

within the limits is

VS;2 = Vo �Gmg
t2L
2t r

�Glg(t � tL) (17)

and the total seat/occupant displacement is, in terms
of equations (15) and (17),

SS =

Z tL

0

 
Vo �Gmg

t2

2tr

!
dt

+

Z tf

tL

"
Vo � Gmg

t2L
2tr

� Glg(t� tL)

#
dt (18)

Upon integration and evaluation of equation (18), the

total seat/occupant displacement is found to be

SS = Votf + Gmg
t3L
3tr

� Gmg
t2Ltf

2tr

�

Glg

2
(tf � tL)

2 (19)

An equation for time tf is also required. Since at
t = tf , VS;2 = 0, equation (17) can be used to
determine tf . Thus, recalling Vo from equation (10)
and de�ning

K =
tL
tr

=
Gl

Gm

and noting that

tL = Ktr

give the solution for the time to be

tf =
1

2
K

"
2(tm + KtL)�

t2r + t2L
tr

#
(20)

For speci�c velocity changes and maximum g of the
trapezoidal pulse, time tm can be determined as

tm =
Vo

Gmg
+

tr

2
(21)

Since seat stroke is eventually desired, the seat/
occupant displacement minus the airplane displace-

ment gives the stroke of the seat or

S =

"
Votf +Gmg

t3L
3tr

� Gmg
t2Ltf

2tr
�

Glg

2
(tf � tL)

2

#

�

"
Votm �Gmg

t2r
6
�Gmg

tm

2
(tm � tr)

#
(22)

Derivation of similar equations for the other pulse

loading shapes is not included ; however, pertinent
equations similar to those presented above for the
trapezoidal pulse are included in the appendix. The

equations allow seat strokes to be determined for the
other pulse shapes.

Results and Discussion

In �gures 3 through 8, peak deceleration Gm is
plotted as a function of initial impact velocity Vo or
seat stroke S for several chosen pulse durations tm
or rise times tr . A line is drawn vertically from an
initial impact velocity (to be dissipated under the
crash pulse) up to a desired pulse duration (or rise
time) curve and extended horizontally to the value

of the peak deceleration which would be necessary
to achieve the velocity change. Where the horizontal
line intersects the seat stroke curve (for the same

pulse duration, or rise time), a vertical line is drawn
to the abscissa to indicate what seat stroke would be
required to limit the deceleration to a 12g level on the

seat pan.

In discussing the results of the seat stroke require-

ments under the various pulse shape loadings, the
velocity change of 31 ft/sec and rise time to peak
deceleration of 0.05 or 0.06 sec (associated with Fed-

eral Regulations Part 23 for GA dynamic seat testing,
ref. 14) are used as the reference point.

Trapezoidal Pulse Loading

The �rst pulse shape considered is the trapezoidal
pulse which is characterized by a sloped line rising to
a peak value which remains constant until all the ve-

locity involved in the impulse is removed. Figure 3(a)
presents the peak deceleration and seat stroke data
for the �xed rise time to a peak of 0.05 and 0.06 sec,
respectively, with a �xed total pulse duration tm
(computed from the peak deceleration of 19g, with
a change in velocity of 31 ft/sec for the 0.05-sec rise
time or from the peak deceleration of 15g peak with

a change in velocity of 31 ft/sec for the 0.06-sec rise
time speci�ed in Part 23). At the Part 23 require-
ment of change in velocity of 31 ft/sec, rise time to
peak deceleration of 0.05 sec, a 19g value is obtained.

Likewise, for the 0.06-sec rise time, the 15g peak is
also possible. For these parameters, a seat stroke of
2.6 and 1.2 in., respectively, is indicated to maintain

the load on the seat pan to a 12g limit.
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Additionally, in �gure 3(b) with compressed
scales, experimental peak decelerations at their re-

spective velocity changes have been plotted for the
general aviation aircraft tests which were conducted
at the Langley Research Center. (See refs. 17
and 18.) With the exception of four data points,

all the general aviation crash data lie outside the
boundaries formed by the vertical line through the
velocity change of 31 ft/sec and the horizontal line

through the peak deceleration of 19g. The indica-
tion is that the Part 23 test values relative to the
simulated real world crash data can be termed as
minimum requirements for the dynamic testing of

general aviation seats. Since the results in �gure 3(a)
indicate stroking of the seats is required under the
speci�ed test parameters and since most data in �g-

ure 3(b) are higher in magnitudes than the stated re-
quirements, seat stroking capability would be highly
desirable to attempt to provide a measure of protec-
tion to occupants undergoing crash loads.

Sine Pulse Loadings

Half-sine pulse. Figure 4 presents peak decel-
eration as a function of velocity change for di�erent

pulse durations of the half-sine crash pulse along with
the required seat stroke to achieve the reduced seat
pan loading under the various assumed peak mag-

nitudes of the half-sine crash pulse. For total pulse
durations between 0.065 and 0.120 sec, correspond-
ing to velocity changes of 16 to 30 ft/sec with a peak
pulse magnitude of 12g, no seat stroke would be re-

quired. However, for a vertical velocity change of
31 ft/sec with a 0.10-sec duration (rise time to peak
= 0.05 sec) the seat would have to stroke approxi-

mately 1 in. at the design limit load (12g) to pro-
vide protection from the 15g maximum deceleration
pulse loading. Note, however, that Part 23 requires
a 0.06-sec rise time with the 15g peak input decel-

eration. Furthermore, the input magnitude of 19g is
only possible with a pulse duration of approximately
0.081 sec (Rise time = 0.0405 sec, not the required

0.05 sec). Seat stroke for the 19g pulse is about 3 in.
If the pulse duration were 0.065 sec, the deceleration
peak is 23g and a seat stroke of about 4.5 in. would
be necessary for occupant protection.

Quarter-sine pulse. Figure 5 presents the
deceleration and stroke results for the quarter-sine
pulse loading. As expected, the data are not dramat-

ically di�erent from the half-sine pulse loading dis-
cussed in the previous section. Similarly, the Part 23
parameters of velocity change of 31 ft/sec with a time

to peak deceleration of 0.05 sec cannot be ful�lled
with this particular shape. For example, a peak value
of 19g with a velocity change of 31 ft/sec requires

a total duration of 0.081 sec (which is also the rise
time to peak) of the quarter-sine pulse, whereas the

speci�cation is 0.05 sec. With a pulse magnitude of
15g with velocity change of 31 ft/sec, the duration is
0.1 sec, and for the 0.05-sec pulse at velocity change
of 31 ft/sec, just over 30g is indicated which is much

too high a peak loading compared with the peak of
19g stated in the Part 23 speci�cation. At the load-
ing of 30g, about 5.4 in. of seat stroke is indicated.

Triangular Pulse Loadings

The following sections discuss the triangular-

shaped pulses, the skewed and the symmetrical, rel-
ative to the e�ect that shape has on seat stroke and
occupant response under dynamic loads. The trian-

gular pulse was found to approximate well the actual
crash pulses measured during the GA Crash Dynam-
ics Program. (See refs. 17 and 18.) For the study of
this paper, one nonsymmetrical pulse and one sym-

metrical triangular pulse were selected. The di�culty
of generating and controlling the drop-o� of triangu-
lar pulse shapes in a laboratory is one reason that

the Part 23 regulation speci�es only the peak decel-
eration and rise time to peak with a velocity change
rather than a total pulse shape. Generating such
parameters is easier in a laboratory if the form is a

trapezoidal pulse shape, and additionally, both re-
quirements of Part 23 can be readily achieved with
such a shape.

Skewed triangle. Data for the skewed triangu-
lar loading pulse are presented in �gure 6. With the

velocity change of 31 ft/sec of Part 23, a pulse dura-
tion of 0.1 sec essentially gives the peak deceleration
of 19g; however, the curves in �gure 6 are for a rise

time to the peak deceleration being 7/8 of the total
pulse duration or for the 0.1-sec pulse duration under
consideration, 0.088 sec. Therefore, the pulse gives,
as stated, approximately the correct velocity change

and the peak deceleration but does not provide the
desired rise time to peak deceleration. Although this
particular skewed triangular loading does not provide

all the desired test parameters for seat testing under
Part 23, it does indicate that at a velocity change
of 31 ft/sec, 0.1 sec, and a peak deceleration of 19g,
about 1 in. of seat stroke should be provided to limit

the load on the seat pan to the design limit of 12g.

Symmetric triangle. For the triangular shape

where the rise time is half the total pulse duration,
a symmetric triangular loading exists. Figure 7(a)
presents peak deceleration and seat stroke data for

the symmetric triangular loading pulse shape. For a
pulse duration of 0.1 sec (rise time of 0.05 sec) and
a velocity change of 31 ft/sec, the peak deceleration
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of 19g is achieved, and approximately 0.5 in. of seat
stroke would be necessary to limit the loads on the

seat pan to the limit of 12g which is being used in
all the examples of this paper. For comparison, ex-
perimental crash pulse data are included with the
trapezoidal pulse and are also shown on compressed

scales in �gure 7(b). The primary emphasis of this
plot is, therefore, that the parameters suggested for
the testing of seats under dynamic inputs as con-

tained in the Part 23 regulations are \minimum re-
quirements" relative to the crash data from full-scale
aircraft tests. A second point is that, even under
what has been stated to be a minimum requirement,

seat stroking capability for the protection of seat oc-
cupants is strongly suggested from the data of �g-
ure 7 as well as the other pulse shapes included in

this paper.

Trapezoids and Triangles

It should be noted that a skewed triangular pulse
with a rise time of 0.06 sec and total pulse duration
of 0.128 sec can provide the peak deceleration of

15g and velocity change of 31 ft/sec as speci�ed by
Part 23. However, as mentioned previously, practical
considerations such as the di�culty of generating and
controlling the drop-o� of triangular pulse shapes led

the GASP panel to recommend that the requirement
be stated as peak loads, times, and velocity changes
with the unstated being that a trapezoidal type pulse

that can be achieved in a laboratory could ful�ll the
stated requirements.

A question may arise \How do the responses un-
der the trapezoidal pulse inputs compare with trian-
gular pulses which were found to approximate closely
the actual crash pulses in the GA testing?" Figure 8

shows a comparison of a triangular and a trapezoidal
pulse with rise time of 0.05 sec and a triangular and a
trapezoidal pulse with rise time of 0.06 sec. It may be

noted that the trapezoidal pulses (open symbols) are
conservative , since they require slightly more stroke
in the seat to limit the loads on the seat pan than the
comparable triangular pulses (closed symbols). For

example, the 0.05-sec trapezoidal pulse at 19g, veloc-
ity change of 31 ft/sec, requires a seat stroke of about
2.5 in., whereas the 0.1-sec triangular pulse requires

only about 1.5 in. Similarly, the 0.06-sec trapezoidal
pulse requires just over 1 in. of stroke, whereas the
0.128-sec triangular pulse requires no stroke. Thus,
the trapezoidal pulse which is easier to generate ex-

perimentally provides some conservatism in the tests,
which is a desirable situation. This is especially good
since it has been shown that the stated peak decel-

erations and velocity change of the requirements are

generally below the actual aircraft crash test results

(see �gs. 3(b) and 7(b)).

Response Considerations of Dummy

Occupant

Data relative to the response behavior of the
dummy occupant under controlled inputs are pre-
sented in �gures 9 and 10. As noted in reference 17,
the DRI is one of several means often used for assess-

ing potential responses of occupants to crash inputs.
Although the DRI is a simple model (�g. 9), it in-
troduces into consideration dynamic response under

crash pulse inputs. If, for example, the resulting 12g
controlled trapezoidal limit load pulse on the seat
pan location (resulting from the trapezoidal and sym-
metrical triangular input crash pulses of the present

study) is used as an input to the DRI model, direct
computations indicate the response to be a DRI of
about 17:2g. The impulse or product of the 12g max-

imum load on the seat pan (and input to the occu-
pant) and time Gltf (1.2 to 1.3 sec for the trapezoidal
and symmetrical triangular input pulses) can be re-
lated to the DRI. For instance, in �gure 10 (which is

a plot of normalized DRI response as a function of
the impulse, ref. 17), the response at the 1.2 impulse
value is in a region that ampli�es by approximately
1.4 the essentially trapezoidal input pulse that the

occupant experiences at the seat pan. Thus the 12g
level translates to a DRI in the occupant of approxi-
mately 17g from �gure 10 which was also veri�ed by

direct computations of DRI.

In reference 16, the test results of both energy-
absorbing and non-energy-absorbing seats were ob-

tained under application of Part 23 input pulse.
Pelvic forces as a function of DRI were monitored in
the tests series and a DRI of approximately 19g was

found to correlate with 1500 lbf in the pelvis of the
dummy occupant. Such results would indicate that
(since seat stroke was included in the present study)
the 17g DRI is probably a fairly good estimate of

the value that would be experienced by the dummy
with control of the load on the seat pan to the 12g
level, and consequently, the 1500 lbf pelvic force level

would likely not be exceeded. Additionally, such re-
sults further emphasize the need for designed seat
stroking to provide for some occupant protection in
crash situations.

Conclusions

An analytical study has been made of the e�ects

of pulse shape models (which potentially could be
used to simulate actual crash pulses) on the required
stroking of aircraft seats to maintain a design limit

load on the seat pan during the particular crash pulse

7



application. Equations for �ve assumed shapes of
crash pulse loadings were derived to express the dis-

placement of the aircraft structure and the displace-
ment of the seat/occupant in terms of the maximum
deceleration, velocity change, limit seat load, and
pulse time. Seat stroke data were computed under

test conditions as speci�ed in Part 23 x 23.562(b)(1)
for dynamic testing of general aviation seats. An ex-
amination of the results and a comparison of the data

to full-scale crash test data for aircraft indicated the
following conclusions:

1. One pulse, the trapezoidal, was capable of

providing the required parameters of both
test conditions speci�ed in the Part 23
x 23.562(b)(1) regulation.

2. The symmetrical triangle was capable of pro-
viding only the required parameters of the
highest input pulse speci�ed in the Part 23
x 23.562(b)(1) regulation.

3. The half-sine, quarter-sine, and one speci�c
skewed triangular pulse could not provide the
required inputs for seat testing speci�ed in the

Part 23 x 23.562(b)(1) regulation.

4. Adjustments in the skew of the triangular
pulse to provide a rise time of 0.06 sec with a

total pulse duration of 0.128 sec would permit
the skewed triangle to provide the necessary
peak g level and velocity change only for the
lower input pulse requirement of the Part 23

x 23.562(b)(1) regulation.

5. Essentially all �ve di�erent pulse shapes at or
near the Part 23 x 23.562(b)(1) regulation of

19g occurring at 0.05 sec, or 15g occurring at
0.06 sec with a velocity change of 31 ft/sec,
require seat stroke to limit the loads on the

seat pan (and consequently on the occupant)
to a design limit below the peak input value.

6. A comparison of the speci�ed seat test param-

eters of the Part 23 regulation with full-scale
crash test data from the NASA General Avi-
ation Crash Test Program indicated that the
required test conditions can be readily termed

a minimum requirement for the testing of gen-
eral aviation seats.

NASA Langley Research Center

Hampton, VA 23665-5225

December 19, 1991
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Appendix

Equations for Evaluating Seat Stroke

Requirements for Di�erent Pulse
Loading Shapes

Presented in this appendix are the equations for
evaluating the seat stroke requirements for pulse
loading shapes which include the half-sine, quarter-
sine, skewed triangular, and symmetrical triangular

pulses. The detailed derivation is not included, but
the steps are essentially identical to those for the
trapezoidal pulse in the main text.

Sine Pulse Loadings

Half-sine. Sketch B illustrates the half-sine
pulse-loading shape. The equations for evaluating
the seat stroke requirements follow the sketch.
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Seat stroke:
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Quarter-sine. The equations for the quarter-
sine crash pulse loading and sketch C that illustrates

the quarter-sine pulse are presented as follows:

a

0 t
L t

m
t
f

a
s 

= -G
l
g

a = -G
m

g sin (πt/2t
m

)

SketchC

9



Initial impact velocity:
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Triangular Pulse Loadings

Equations for the skewed triangular pulse loading

and the symmetrical triangle, which is a special
case of the skewed shape, are presented. Sketch D
illustrates the skewed triangular pulse loading shape;

sketch E, the symmetrical triangle.

a

0 t
L

t
r t

m
t
f

a
s 

= -G
l 

g

a = -G
m

g[1+ t
r 

/(t
m

 - t
r 

)]

a = -G
m

g(t/t
r 

)

+ G
m

g[t /(t
m

 - t
r 

)]

Sketch D

a

0 t
L

t
r t

m
t
f

a
s 

= -G
l
g

a = -G
m

g[1 + t
r 

/(t
m

 - t
r 

)]

a = -G
m

g(t/t
r 

)

+ G
m

g[t /(t
m

 - t
r 

)]

Sketch E

Initial impact velocity:

Vo =
Gmgtm

2
(A15)

Displacement of aircraft:

SA = Votm �
Gmgt

2
r

6
�

Gmgtr

2
(tm � tr)

�

1

2

Gmgtm

tm � tr

�
t2m � t2r

�
+Gmgtmtr

�

Gmgt
2
r

2
+

Gmg

6(tm � tr )
(t3m � t3r ) (A16)

Seat/occupant displacement:

SS = Votf +
Gmgt

3
L

3tr
�Gmg(t

2
L)

tf

2tr
�

Glg

2
(tf � tL)

2

(A17)

10



Ratio of limit load to peak deceleration:
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(7/8 has been assumed for the skewed triangle, whereas
1/2 is used for the symmetrical triangle).
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